1 Lévy flights and continuous time random
walks (CTRW)

1.1 Random walks and Lévy flights

Figure 1.1: Two dimensional trajectories of random walks on large scales. Left: Ordinary random walk
with finite, well defined variance of single steps. Right: A Lévy flight trajectory of index 3 = 1.

The position of an ordinary random walk is frequently defined as a suw ioflependent identically
distributed displacements X, :

N
Xy =) AX,. (1.1)
n=1
Each displacement is drawn from the same probability density function fodf)). Here it suffices
to discuss symmetric single step pdfs in one dimension. According to the central limit theorem the pdf
Wy (y, N) for the scaled position

XN
Yy = 2 1.2
V=N (1.2)
is independent ol in the limit N — oo and Gaussian, i.e.
. ]. _ 2/20.2
lim Wy (y, N) = Wy (y) = eV ) (1.3)
N—o0 202

whereg?is the variance of the single stepsX,,. From Eq. (1.2) one can read off the universal scaling
relation
Xy~ VN (1.4)



for ordinary random walks. Alternatively one can compute the varianc¥ pfas a function of step
numberN,
(X}) = o?N. (1.5)

Eg. (1.2) in combination with Eq. (1.3) implies that for laryethe pdfiWx (x, V) for the positionX y
is asymptotically a spreading Gaussian:

W (2, N) ~ \/%Wy(x/\/ﬁ). (1.6)

The fact thafiVx (2, N') depends on the ratio//N merely is another way of stating the scaling rela-

tion (1.4). Note however, that for relation (1.6) the existence of the variance of the single steps is no
requirement as opposed to Eq. (1.5). On large scales trajectories of ordinary random walks resemble
ordinary Brownian motion.

Lévy flights belong to a class of random walks for which the central limit theorem does not apply. They
can be defined in a similar fashion as ordinary random walks, i.e. by a sum of independent identically
distributed random increments (Eg. (1.1)). If the single step pdfs possess algebraic tails however, such
that the single step second moment is divergent, i.e.

p(Az) ~ 0< pB<2, @.7)

1
Agl+6
a generalization of the central limit theorem, the Lévy Khinchin theorem applies. It states that, if the
position of a Lévy flight is scales according to

XN
the scaled variable possesses a pdf independéhitinfthe limit N — oo, i.e.
Jim Wy sy, N) = Wys(y)- (1.9)

The limiting densitylVy g(y) is referred to as a Lévy stable law of indéxand is no longer Gaussian. It
can be expressed most easily in Fourier-space:

Wy,s(y) = 2W/O”fe ky=DIkI” (1.10)

whereD is some constant. Asymptotically, the limiting density has the same power law behaviour as the

single step distribution,
1
Wy a(y) ~ g[8

Combining Egs. (1.8) and (1.10) one can obtain an explicit expression for the pg§ af the limit of

large step number,
N VY (x/ NY )

This implies that the position of a Lévy flight scales superdiffusively with the step number:

Wxﬁ(l‘, N) ~

Xy ~ NYB,

Geometrically, trajectories of Lévy flights are easily distinguished from those of ordinary Brownian
motion. In Fig. 1.1 a two-dimensional trajectory of a Lévy flight is compared with a trajectory of ordinary
Brownian motion.



1.2 Continuous time random walks

Temporally continuous random walks can be easily constructed from time discrete random walks by
identifying the step numbeN with the time elapsed and the associated time incremekt = ¢/N
between successive steps. A generalization of this concept is the continuous time random walk (CTRW),
a simple version of which is defined by two pdfs: one for the spatial displacenféats) and one
for random temporal incremengg At). The CTRW then consist of pairwise random and stochastically
independent events, a spatial displacem®ntand a temporal incremettt drawn from the combined
pdf

p(Az, At) = [(Az)d(At).

After N iterations the position of the walker is given by

N
XN = Z Al’n
n=1
and the time elapsed is
N
Ty =) Aty
n=1

The quantity of interest is the positioXi(¢) after timet. The pdfiW (x, t) for this process can be com-
puted in a straightforward fashion [1] and can be expressed in terms of the [@ilfg and¢(At). The
Fourier-Laplace transform o/ (z, t) is given by

1—¢(u)
u(l—¢(u) f(K)))’

where¢(u) and f (k) denote the Laplace- and Fourier transfornp0f\t) and f (Ax), respectively. The
pdf Wz, t) is then obtained by inverse Laplace-Fourier transform

Wk, u) = (1.11)

1 1 c+ioo

= oromi

W (x,t) du / dk e =RV (K, w). (1.12)

c—100

W (z, t) may exhibit four different universal behaviours which only depend on the asymptoti¢\of)
and¢(At) and thus the behaviour gf k) and¢(u) for small arguments.

1.2.0.1 Ordinary Diffusion

When both, the variance of the spatial steps and the expectation value of the temporal increments exist
the Fourier- and Laplace transform 6fAz) and¢(At) read

flk) = 1-0%k2+0O(kY

p(u) = 1—7u+Ou?),
whereo? andr are some constants. Inserted into Eq. (1.11) and employing inversion (1.12) one obtains
asymptotically

1
W(z,t) ~ We_’ﬂ/m.

Thus, CTRW are equivalent to Brownian motion on large spatio-temporal scales.



1.2.0.2 Lévy Flights

When the spatial displacements are drawn from a power-law pdf such as (1.7) the Fourier transform for
small arguments is given by
f(k) =1— Dglk|’ + O(K?).

When combined with temporal increments with finite expectation value, the same procedure as outlined
above yields

1
~ W
whereLg is a Lévy stable law of index. Consequently, a CTRW with algebraically distributed spatial
steps of infinite variance is equivalent to ordinary Lévy flights with a superdiffusive scaling with time

W (z,1) Ly(x/t'/7),

X(t) ~ tY/5.

1.2.0.3 Fractional Brownian motion (subdiffusion)

The complementary scenario occurs when ordinary spatial steps (finite variangékard 1 — o2k?)
are combined with a power-law in the pdf for temporal increments:

1

In this case, the time between successive spatial increments can be very long, effectively slowing down
the random walk. The Laplace transform &grAt) is given by

o(u) =1 — Dyu®,

whereD,, is some constant. One obtains for the position of such a random walk
1 )
Wiz, t) = o /dke—mEa(Dak%a), (1.13)
7

where the functiort,is the Mittag-Leffler function defined by

Ea(z) =) T ran)

n=0
It is easily checked that

L Gaator?),

W(z,t) ~ v

whereG,, is a non-Gaussian limiting function. From this the scaling relation
X(t) ~ t*/?

can be obtained. Sinee < 1 these processes are subdiffusive and sometimes referred to as fractional
Brownian motion.

1.2.0.4 Ambivalent processes

The last and most interesting combination of waiting times and spatial steps is the one in which long
waiting times compete and interfere with long range spatial steps, i.e. ifdidth) and f(Ax) decay
asymptotically as a powerlaw:

1



and .

In this case
f(k) = 1-Dglkl? + O(K?)
p(u) = 1— Dou®+ O(u?).

The asymptotic pdf for the position of the ambivalent process can again be expressed in terms of a Fourier
inversion and the Mittag-Leffler function according to

W(x, t) = % / dle =% B, (— D K1), (1.14)

Note, however, the terrik|%in the argument ofZ,,. From Eq. (1.14) one can extract the scaling relation
X(t) ~ /5.

The ratio of the exponents/ 3 resembles the interplay between sub- and superdiffusion For2a
the ambivalent CTRW is effectively superdiffusive, for- 2« effectively subdiffusive. Fof = 2a the
process exhibits the same scaling as ordinary Brownian motion, despite the crucial difference of infinite
moments and a non-Gaussian shape of thé¥df, ¢).

The various types of asymptotic universal behaviours are depicted in Fig. 1.2 which shows a phase
diagram spanned by the temporal exporeand the spatial exponefit
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Figure 1.2: The asymptotic universality classes of continuous time random walks defined in the text as a
function of the universality exponents 0 < o < 1 and 0 < 8 < 2. Lévy flights, fractional Brownian motion
as well as ordinary diffusion are limiting cases of the more general class of ambivalent processes.
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