
1 Lévy flights and continuous time random
walks (CTRW)

1.1 Random walks and Lévy flights

Figure 1.1: Two dimensional trajectories of random walks on large scales. Left: Ordinary random walk
with finite, well defined variance of single steps. Right: A Lévy flight trajectory of index β = 1.

The position of an ordinary random walk is frequently defined as a sum ofN independent identically
distributed displacements∆Xn:

XN =
N∑

n=1

∆Xn. (1.1)

Each displacement is drawn from the same probability density function (pdf)p(∆x). Here it suffices
to discuss symmetric single step pdfs in one dimension. According to the central limit theorem the pdf
WY (y, N) for the scaled position

YN =
XN√

N
(1.2)

is independent ofN in the limit N →∞ and Gaussian, i.e.

lim
N→∞

WY (y, N) = WY (y) =
1√

2πσ2
e−y2/2σ2

, (1.3)

whereσ2is the variance of the single steps∆Xn. From Eq. (1.2) one can read off the universal scaling
relation

XN ∼
√

N (1.4)
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for ordinary random walks. Alternatively one can compute the variance ofXN as a function of step
numberN , 〈

X2
N

〉
= σ2N. (1.5)

Eq. (1.2) in combination with Eq. (1.3) implies that for largeN the pdfWX(x,N) for the positionXN

is asymptotically a spreading Gaussian:

WX(x,N) ∼ 1√
N

WY (x/
√

N). (1.6)

The fact thatWX(x,N) depends on the ratiox/
√

N merely is another way of stating the scaling rela-
tion (1.4). Note however, that for relation (1.6) the existence of the variance of the single steps is no
requirement as opposed to Eq. (1.5). On large scales trajectories of ordinary random walks resemble
ordinary Brownian motion.

Lévy flights belong to a class of random walks for which the central limit theorem does not apply. They
can be defined in a similar fashion as ordinary random walks, i.e. by a sum of independent identically
distributed random increments (Eq. (1.1)). If the single step pdfs possess algebraic tails however, such
that the single step second moment is divergent, i.e.

p(∆x) ∼ 1
∆x1+β

0 < β < 2, (1.7)

a generalization of the central limit theorem, the Lévy Khinchin theorem applies. It states that, if the
position of a Lévy flight is scales according to

YN =
XN

N1/β
, (1.8)

the scaled variable possesses a pdf independent ofN in the limit N →∞, i.e.

lim
N→∞

WY,β(y, N) = WY,β(y). (1.9)

The limiting densityWY,β(y) is referred to as a Lévy stable law of indexβ and is no longer Gaussian. It
can be expressed most easily in Fourier-space:

WY,β(y) =
1
2π

∫
dk e−iky−D|k|β , (1.10)

whereD is some constant. Asymptotically, the limiting density has the same power law behaviour as the
single step distribution,

WY,β(y) ∼ 1
|y|1+β

.

Combining Eqs. (1.8) and (1.10) one can obtain an explicit expression for the pdf ofXN in the limit of
large step number,

WX,β(x,N) ∼ 1
N1/β

WY,β

(
x/N1/β

)
.

This implies that the position of a Lévy flight scales superdiffusively with the step number:

XN ∼ N1/β .

Geometrically, trajectories of Lévy flights are easily distinguished from those of ordinary Brownian
motion. In Fig. 1.1 a two-dimensional trajectory of a Lévy flight is compared with a trajectory of ordinary
Brownian motion.
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1.2 Continuous time random walks

Temporally continuous random walks can be easily constructed from time discrete random walks by
identifying the step numberN with the time elapsedt and the associated time increment∆t = t/N
between successive steps. A generalization of this concept is the continuous time random walk (CTRW),
a simple version of which is defined by two pdfs: one for the spatial displacementsf(∆x) and one
for random temporal incrementsφ(∆t). The CTRW then consist of pairwise random and stochastically
independent events, a spatial displacement∆x and a temporal increment∆t drawn from the combined
pdf

p(∆x,∆t) = f(∆x)φ(∆t).

After N iterations the position of the walker is given by

XN =
N∑

n=1

∆xn

and the time elapsed is

TN =
N∑

n=1

∆tn.

The quantity of interest is the positionX(t) after timet. The pdfW (x, t) for this process can be com-
puted in a straightforward fashion [1] and can be expressed in terms of the pdfsf(∆x) andφ(∆t). The
Fourier-Laplace transform ofW (x, t) is given by

W (k, u) =
1− φ(u)

u (1− φ(u) f(k)))
, (1.11)

whereφ(u) andf(k) denote the Laplace- and Fourier transform ofφ(∆t) andf(∆x), respectively. The
pdf W (x, t) is then obtained by inverse Laplace-Fourier transform

W (x, t) =
1
2π

1
2πi

∫ c+i∞

c−i∞
du

∫
dk eut−ikxW (k, u). (1.12)

W (x, t) may exhibit four different universal behaviours which only depend on the asymptotics off(∆x)
andφ(∆t) and thus the behaviour off(k) andφ(u) for small arguments.

1.2.0.1 Ordinary Diffusion

When both, the variance of the spatial steps and the expectation value of the temporal increments exist
the Fourier- and Laplace transform off(∆x) andφ(∆t) read

f(k) = 1− σ2k2 +O(k4)
φ(u) = 1− τu +O(u2),

whereσ2 andτ are some constants. Inserted into Eq. (1.11) and employing inversion (1.12) one obtains
asymptotically

W (x, t) ∼ 1√
t
e−x2/Dt.

Thus, CTRW are equivalent to Brownian motion on large spatio-temporal scales.
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1.2.0.2 Lévy Flights

When the spatial displacements are drawn from a power-law pdf such as (1.7) the Fourier transform for
small arguments is given by

f(k) = 1−Dβ|k|β +O(k2).

When combined with temporal increments with finite expectation value, the same procedure as outlined
above yields

W (x, t) ∼ 1
t1/β

Lβ(x/t1/β),

whereLβ is a Lévy stable law of indexβ. Consequently, a CTRW with algebraically distributed spatial
steps of infinite variance is equivalent to ordinary Lévy flights with a superdiffusive scaling with time

X(t) ∼ t1/β .

1.2.0.3 Fractional Brownian motion (subdiffusion)

The complementary scenario occurs when ordinary spatial steps (finite variance andf(k) ≈ 1 − σ2k2)
are combined with a power-law in the pdf for temporal increments:

φ(∆t) ∼ 1
∆t1+α

0 < α < 1.

In this case, the time between successive spatial increments can be very long, effectively slowing down
the random walk. The Laplace transform forφ(∆t) is given by

φ(u) = 1−Dαuα,

whereDα is some constant. One obtains for the position of such a random walk

W (x, t) =
1
2π

∫
dke−ikxEα(−Dαk2tα), (1.13)

where the functionEαis the Mittag-Leffler function defined by

Eα(z) =
∞∑

n=0

zn

Γ(1 + αn)
.

It is easily checked that

W (x, t) ∼ 1
tα/2

Gα(x/tα/2),

whereGα is a non-Gaussian limiting function. From this the scaling relation

X(t) ∼ tα/2

can be obtained. Sinceα < 1 these processes are subdiffusive and sometimes referred to as fractional
Brownian motion.

1.2.0.4 Ambivalent processes

The last and most interesting combination of waiting times and spatial steps is the one in which long
waiting times compete and interfere with long range spatial steps, i.e. if bothφ(∆t) andf(∆x) decay
asymptotically as a powerlaw:

f(∆x) ∼ 1
∆x1+β

0 < β < 2
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and

φ(∆t) ∼ 1
∆t1+α

0 < α < 1.

In this case

f(k) = 1−Dβ|k|β +O(k2)
φ(u) = 1−Dαuα +O(u2).

The asymptotic pdf for the position of the ambivalent process can again be expressed in terms of a Fourier
inversion and the Mittag-Leffler function according to

W (x, t) =
1
2π

∫
dke−ikxEα(−Dα|k|βtα). (1.14)

Note, however, the term|k|β in the argument ofEα. From Eq. (1.14) one can extract the scaling relation

X(t) ∼ tα/β.

The ratio of the exponentsα/β resembles the interplay between sub- and superdiffusion. Forβ < 2α
the ambivalent CTRW is effectively superdiffusive, forβ > 2α effectively subdiffusive. Forβ = 2α the
process exhibits the same scaling as ordinary Brownian motion, despite the crucial difference of infinite
moments and a non-Gaussian shape of the pdfW (x, t).

The various types of asymptotic universal behaviours are depicted in Fig. 1.2 which shows a phase
diagram spanned by the temporal exponentα and the spatial exponentβ.
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Figure 1.2: The asymptotic universality classes of continuous time random walks defined in the text as a
function of the universality exponents 0 < α < 1 and 0 < β < 2. Lévy flights, fractional Brownian motion
as well as ordinary diffusion are limiting cases of the more general class of ambivalent processes.
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